Knowledge-based Object Detection in Laser Scanning Point Clouds
نویسنده
چکیده
Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and their representation by the data and the behavior of algorithms to the machine. This “understanding” enables the machine to assist human interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our approach such as Web Ontology Language (OWL), used for formulating the knowledge base and the Semantic Web Rule Language (SWRL) with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists’ knowledge of the scene and algorithmic processing.
منابع مشابه
3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملRobotic Grasping of Unknown Objects
This work describes the development of a novel vision-based grasping system for unknown objects based on laser range and stereo data. The work presented here is based on 2.5D point clouds, where every object is scanned from the same view point of the laser range and camera position. We tested our grasping point detection algorithm separately on laser range and single stereo images with the goal...
متن کاملDetection and Classification of Pole-like Objects from Mobile Laser Scanning Data of Urban Environments
− The Mobile Laser Scanning (MLS) system can acquire point clouds of urban environments including roads, buildings, trees, lamp posts etc. and enables effective mapping of them. With the spread of the MLS system, the demands for the management of roads and facilities using MLS point clouds have increased. Especially, pole-like objects (PLOs) such as lamp posts, utility poles, street signs etc. ...
متن کاملOutlier Detection in Laser Scanner Point Clouds
Outlier detection in laser scanner point clouds is an essential process before the modelling step. However, the number of points in the generated point cloud is in the order of million points, so (semi) automatic approaches are necessary. Having introduced the sources of outliers in typical laser scanner point clouds, an outlier detection algorithm using a density based algorithm is addressed. ...
متن کامل